
IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2021 1

FedCD: A Hybrid Federated Learning Framework
for Efficient Training with IoT Devices

Jianchun Liu, Member, IEEE,ACM, Yujia Huo, Pengcheng Qu, Sun Xu, *Zhi Liu, Member, IEEE, *Qianpiao
Ma, Jinyang Huang, Member, IEEE

Abstract—With billions of IoT devices producing vast data
globally, privacy and efficiency challenges arise in AI applica-
tions. Federated learning (FL) has been widely adopted to train
deep neural networks (DNNs) without privacy leakage. Existing
centralized and decentralized FL architectures have limitations,
including memory burden, huge bandwidth pressure and non-IID
data issues. This paper introduces a novel hybrid FL framework,
named FedCD, merging the benefits of both centralized and
decentralized FL architectures. FedCD strategically distributes
the model based on layer sizes and consensus distances (i.e.,
the deviation between the local models and the global average
models), effectively relieving network bandwidth pressures and
accelerating training speed even under the non-IID setting. This
method significantly mitigates resource constraints and improves
model accuracy, offering a promising solution to the challenges
in distributed machine learning. Extensive experiment results
show the high effectiveness of FedCD. The total completion time
of FedCD is reduced by 16.3%-53% and the average accuracy
improvement is 1.85% compared to the baselines.

Index Terms—Edge Computing, Federated Learning, Resource
Constraints, Non-IID data, IoT Devices.

I. INTRODUCTION

B ILLIONS of Internet of Things (IoT) devices globally
generate substantial data, including photos and voice

samples, propelling the advancement of artificial intelligence
(AI) [1]. Nonetheless, the process of cloud computing carries
the inherent risk of privacy breaches since the data gathered
by the cloud may contain sensitive and confidential user infor-
mation. Also, transferring all data to a remote cloud server can
increase latency and degrade user experience [2]. Therefore,
edge computing (EC) [3], [4] has emerged as a solution to
locally store data and shift high computing power applications
from cloud servers to network edges [5]. Furthermore, to
alleviate data privacy leakage concerns, federated learning

Some earlier results of this paper were published in the Proceedings of
The 29th IEEE International Conference on Parallel and Distributed Systems
(ICPADS 2023). Corresponding authors: Zhi Liu, Qianpiao Ma.

J. Liu, Y. Huo, P. Qu and S. Xu are with the School of Computer
Science and Technology, University of Science and Technology of China,
Hefei, Anhui, China, 230027, and also with Suzhou Institute for Advanced
Research, University of Science and Technology of China, Suzhou, Jiangsu,
China, 215123. E-mails: jcliu17@ustc.edu.cn, yujia huo@mail.ustc.edu.cn,
qupengcheng@mail.ustc.edu.cn, xusun000@mail.ustc.edu.cn.

Z. Liu is with the Department of Computer and Network Engineering,
The University of Electro-Communications, Tokyo, 1828585, Japan. E-mail:
liu@ieee.org.

Q. Ma is currently a post-doctoral researcher at Purple Mountain
Laboratories, Nanjing, China, 210000. E-mail: maqianpiao@pmlabs.com.cn.

J. Huang is with the Anhui Province Key Laboratory of Affective
Computing and Advanced Intelligence Machine and School of Computer
and Information, Hefei University of Technology, Hefei, 230601,
China.E-mail: hjy@hfut.edu.cn.

(FL) [6], [7] is employed for distributed machine learning
at the network edge across distributed datasets. Additionally,
some techniques (e.g., differential privacy [8], [9]) also can be
adopted to enhance individual privacy by adding noise to data
in FL.

The most prevalent and widely used architecture in the
existing FL mechanisms is the centralized FL architecture
[6], [10], which involves local training at the network edge
and model aggregation at the parameter server (PS). Initially,
each worker executes stochastic gradient descent (SGD) [6]
on its local dataset to minimize the loss function and then
dispatches the updated model to the PS for global aggregation.
Subsequently, the PS circulates the averaged model back to the
workers for the following round of local training. However, the
PS can become a bottleneck due to potential traffic congestion
caused by numerous workers simultaneously communicating,
leading to system breakdown if the PS is compromised.

Decentralized federated learning (DFL) [11], [12] serves as
an alternative FL architecture. Here, each worker exchanges
models with its neighbors and aggregates them for the subse-
quent local training. As there is no central PS, DFL eliminates
the likelihood of traffic congestion and failure risks at the PS.
Furthermore, communication between workers is faster than
between workers and the PS, significantly reducing communi-
cation time. Despite these advantages, two challenges exist in
DFL: 1) Limited Memory Size. Workers must receive and store
neighbor models, which may strain memory resources because
the memory size of a worker is always limited. 2) Non-IID
Local Data. The training data of a worker is always determined
by the environment and users’ preferences. The data in each
worker is not independent and identically distributed (non-IID)
in practice and cannot represent the overall data distribution.
For example, in the garage, some cameras take more pictures
of people, and some take more pictures of vehicles. This
challenge also exists in centralized FL. But in DFL, each
worker only exchanges models with a limited number of
neighbors, and the training speed and the test accuracy are
affected more by non-IID local data [13], [14].

To address the memory strain challenge raised by large
model sizes, the model parallelism technique [15]- [16] is
suggested. This approach divides the model into sub-models
and distributes them across various devices, alleviating device
resource consumption. For instance, RePurpose [15] adjusts
neuron positions to decrease intermediate data transmission
between workers. However, it still increases network band-
width strain due to frequent data transmission. The pdADMM
[16] divides the model by layers, allowing each layer to update
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the model independently without communicating with other
layers. However, this method is only suitable for relatively
small models. Current deep neural networks (DNNs) have
large parameter sizes that continue to grow. Transmitting these
large models to the PS or neighbors will inevitably consume
substantial bandwidth resources, presenting a significant chal-
lenge for both centralized and decentralized architectures.

In this paper, we propose a novel hybrid FL framework,
named FedCD, which combines features of both centralized
and decentralized architectures, to enhance model training with
IoT devices. In FedCD, we leverage the model parallelism, i.e.,
some model layers (or sub-model) adopt centralized aggrega-
tion, while the remaining model layers adopt decentralized
aggregation. Specifically, we design a score for each layer
according to the layer’s location and size, and distribute the
layers to the PS and the neighbors according to the scores
at the beginning stage. Then we use the intermediate data
(i.e., consensus distances [17]) to form a new layer distribution
method at the following stage. FedCD relieves network band-
width pressure by transmitting sub-models in both centralized
and decentralized architectures. However, under the decen-
tralized setup, each worker exchanges models with only a
limited number of other workers, reducing model performance
when local data is non-IID [14]. To address this, FedCD
incorporates a centralized architecture to aggregate sub-models
into a global model at the PS, yielding good performance
even with non-IID local data. Furthermore, only sub-models
are stored in the workers’ memories which can relieve the
burden of the memories. Consequently, our proposed FedCD
can enhance model training even under non-IID settings and
alleviate resource constraint pressures. The main contributions
of our work can be summarized as follows:

• We propose a novel hybrid FL framework, called FedCD,
which facilitates the distribution of sub-models to the PS
and the workers’ neighbors for efficient aggregation. We
provide theoretical evidence affirming the convergence
guarantee of model training with FedCD.

• We design a novel algorithm that strategically determines
the distribution of layers to the PS and the neighbors.
This decision is initially based on the sizes and positions
of the layers, and it is subsequently adjusted according
to consensus distances, enabling accelerated convergence
speed.

• Experiment results on classical models and real-world
datasets show the effectiveness of the proposed method.
FedCD can accelerate the training speed by 16.3% -
53% and reduce communication traffic compared to the
existing FL systems.

The rest of this paper is organized as follows. Section
II introduces some preliminaries, and proposes the novel
framework of FedCD. We also give the convergence analysis
and formalize the problem in Section II. Besides, we provide
the motivation for the algorithm design and propose the
efficient algorithm for FedCD in Section III. In Section IV,
the experiments are conducted and the corresponding results
are presented. The related works are summarized in Section
V. Finally, we conclude the paper in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Federated Learning
Traditional centralized FL consists of N workers and a

parameter server (PS). Each worker i has a loss function based
on the local dataset Di and the size of the dataset is |Di|. The
loss function can be defined as:

Fi(w
t
i) =

1

|Di|
∑
ξ∈Di

fi(w
t
i , ξ) (1)

where wt
i is the model parameter of worker i at round t and

ξ is a batch of the local dataset Di. fi(wt
i , ξ) is the local loss

function over ξ. To minimize the loss function Fi(w
t
i), worker

i uses stochastic gradient descent (SGD) [6] to update the local
model, which can be formulated as:

w
t+ 1

2
i = wt

i − η∇Fi(w
t
i) (2)

where η is the learning rate, wt+ 1
2

i is the local model of worker
i which finishes the local training after round t, and ∇Fi(w

t
i)

is the gradient of the loss function.
After local training, each worker pushes the local model to

the PS for global aggregation. This process can be formulated
as:

F (wt) =
1

N

N∑
i=1

Fi(w
t) (3)

where wt = 1
N

∑N
i=1 w

t
i and F (wt) is the global loss function.

Then the PS sends the updated global model to the workers
for the next training.

In decentralized FL, the workers are connected in a network
topology. This topology can be modeled as an undirected graph
G = (V,E), where V = {1, 2, ..., N} and E ∈ V × V . We
use a matrix A = {Ai,j ∈ {0, 1} , 1 < i, j < N} to represent
the graph, where Ai,j = 1 represents there is a link between
worker i and worker j. Otherwise, Ai,j = 0. Worker i first
updates the local model using SGD, and then sends the local
model to neighbors. Worker i receives the models from their
neighbors and aggregates them as:

wt+1
i = wt

i +
∑
j∈Nt

i

ut
i,j(w

t+ 1
2

j − w
t+ 1

2
i ) (4)

where N t
i is the neighbor set of worker i at round t. ui,j

is the mixing weight for aggregating the model of worker j.
After aggregating the received models, the worker i adopts the
aggregated model for the next local training.

B. Overview of FedCD
In this section, we will introduce our proposed framework

FedCD, which includes an edge server (PS) and some workers.
In FedCD, the PS periodically receives the status information
(e.g., the consensus distance and the accuracy improvement).
After that, the PS generates the layer distribution policy and
sends it to the workers at regular intervals. Once the workers
receive the policy, the workers will send some layers to
the PS and send the rest layers to the neighbors according
to the policy. This entire process operates over numerous
communication rounds until the model achieves convergence.

We introduce more details about the training process of
FedCD through the workflow in Fig. 1. Firstly, in the initial-
ization stage of the model, PS will initialize the entire global
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Fig. 1: The overview of FedCD.

model and send it to all workers. Then, workers perform local
model training with the fresh global model. Subsequently, PS
generates the layer distribution policy, i.e., which layer sends
to the PS and which layer sends to the neighbors, according
to the status information and proposed algorithm in Section
III. After that, the workers send some layers to the PS and
send some layers to the neighbors. The PS aggregates the
received models using wg,t(l) = 1

Nwt
i(l) at round t, where

wt
i(l) is the layer l of trained model at worker i. Then, PS

sends the updated model wg(l) to the workers. In addition, the
workers will aggregate the models from the neighbors, and the
aggregated model of worker i is denoted as wn,t

i (l). Finally,
worker i performs model combination, which is defined as
wc,t

i ={wg,t(L1), w
n,t
i (L2)}, wherein layers received from

the PS are included in set L1, and those received from the
neighbors are included in set L2. After combination, the
worker i uses the combined model wc,t

i for the next local
training. The workers use SGD to update the models:

wt+1
i = wc,t

i −▽f(wc,t
i ) (5)

The goal of FedCD is to minimize the loss function:

F (w) =
1

N

N∑
i=1

f(wc,t
i ) (6)

To better explain FedCD, we provide an example in Fig.
2. In this system, there are five workers and one PS. At the
beginning, the PS initializes the model and distributes it to five
clients. For worker 3, it has three neighbors (workers 1, 2, and
4) for model exchange. According to the strategy distributed
by the server, these neighbors send layers 2-4 of the model to
worker 3. Besides, layer 1 of all workers is transmitted to the
PS for aggregation. Then, worker 3 combined layers 2-4 from
neighbors and layer 1 from the PS into a fresh local model to
continue training. The entire process will continue until global
convergence.

C. Convergence Analysis

In this section, we propose the convergence analysis of
FedCD and make four widely used assumptions as follows:

Fig. 2: An illustration example of FedCD.

• Assumption1: Lipschitzian gradient. The loss function
Fi is with L Lipschitzian gradients, i.e.,
||∇Fi(w1)−∇Fi(w2)| |2 ≤ L2 ∥w1 − w2∥2 ,∀w1, w2, i

(5)
• Assumption2: Network connectivity. The network

topology G is a connected topology.
• Assumption3: Bounded gradient variance. The vari-

ance of stochastic gradients is bounded, i.e.,
Eξ∈Di

|| ▽ Fi(w)−▽fi(w; ξ)||2 ≤ σ2,∀i, w (6)

Ei∈V || ▽ Fi(w)−▽F (w)||2 ≤ ς2,∀w (7)

• Assumption4: Bounded model variance. The variance
between the local model and global model is bounded by
ϵ2 , i.e.,

Ei∈V ||wt − wt
i ||2 ≤ ϵ2,∀t, i. (8)

where wt is the average of the combined model of all the
workers, and wt

i is the combined model of worker i.
To express the relationship between the average of the

combined models and the global model when one worker
finishes local training, we adopt an upper bound α2, i.e.,

||wt+1 − wt+ 1
2 ||2 ≤ α2 (9)

where wt+ 1
2 represents the global model when one worker

finishes the local training using SGD after round t, and wt+1

represents the average of the combined models in round t+1.
We conduct an experiment to test the change in the value

of ||wt+1 − wt+ 1
2 || . The results show that ||wt+1 − wt+ 1

2 ||
oscillates around 0.8 in IID settings and around 1 in non-IID
settings with the increase of communication rounds. So we
can use a small bound to limit ||wt+1 − wt+ 1

2 ||2.
We also define the upper bound β2 as:

||∇F (wt+ 1
2 )||2 − ||∇F (wt)||2 ≤ β2 (10)

We replace the parameter in [18] (e.g., M̂k by ϵ2). The
detailed proof is as follows: (w0 is the initial model, w∗ is
the optimal model which minimizes F )
E[F (wt+ 1

2 )− F (w∗))]

≤ E[F (wt)−F (w∗)]− ηM
2N E||∇F (wt)||2 +λ (11)

where λ ≤ ηML2ϵ2

2N + η2L(σ2M+6ς2M2)
2N2 + 6η2L3M2ϵ2

N2 , M is
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the size of the data used in each communication round by one
worker. We further have:
E[F (wt+1)− F (wt+ 1

2 )]

≤ E < ∇F (wt+ 1
2 ), wt+1 − wt+ 1

2 > +L
2 ||w

t+1 − wt+ 1
2 ||2

= 1
2 ||∇F (wt+ 1

2 ) + wt+1 − wt+ 1
2 ||2 − 1

2 ||∇F (wt+ 1
2 )||2

− 1
2 ||w

t+1 − wt+ 1
2 ||2 + L

2 ||w
t+1 − wt+ 1

2 ||2

≤ 1
2

{
||∇F (wt+ 1

2 )||2 + ||wt+1 − wt+ 1
2 ||2

}
+ L

2 ||w
t+1 − wt+ 1

2 ||2

≤ 1
2E||∇F (wt)||2 + 1

2β
2 + L+1

2 α2 (12)

By adding Eq. (11) and Eq. (12), we obtain the convergence
bound between two consecutive training rounds:
E[F (wt+1)− F (w∗)]

≤ E[F (wt)− F (w∗)]− ηM−N
2N E||∇F (wt)||2

+ λ+ 1
2β

2 + L+1
2 α2

E[F (wt+1)− F (wt)]

≤ −ηM−N
2N E||∇F (wt)||2 + λ+ 1

2β
2 + L+1

2 α2 (13)

We sum the results in Eq. (13) from t=0 to t=T-1 and obtain:∑T−1
t=0 E[F (wt+1)− F (wt)] = E[F (wT )− F (w0)]

≤ −ηM−N
2N

∑T−1
t=0 E||∇F (wt)||2 + T (λ+ 1

2β
2 + L+1

2 α2)

1
T

∑T−1
t=0 E||∇F (wt)||2

≤ 2N(F (w0)−F (w∗))
T (ηM−N) + 2N

(ηM−N) (λ+ 1
2β

2 + L+1
2 α2) (14)

D. Problem Formulation

To train models among distributed workers by FL, it is
inevitable to consume resources (e.g., CPU cycles and net-
work traffic). Formally, we define the computing resource
consumption of worker k in one round as ck. Thus, the
computing resource consumption of T rounds is Tck. We
accumulate N workers’ computing consumption and the total
consumption should not exceed its budget Bc. Each worker’s
transmission workload of centralized architecture is defined
as Wa, where Wa =

∑L
i=1(1− xi)M(i). We define the total

size of the transmitted data of one peer in a decentralized
architecture as Wb, where Wb =

∑L
i=1 2xiM(i). M(i) is

the data volume of the i-th layer model. xi is a binary
variable and it indicates whether layer i adopts centralized
architecture or not (0 for adopting centralized architecture and
1 for adopting decentralized architecture). We define the total
transmission budget of a round as Bb. Let B1 and B2 represent
the inbound bandwidth between workers and the PS, and the
outbound bandwidth between workers and the PS, respectively.
We denote the bandwidth of worker j and worker m as Bjm.
rjm is a binary variable and it indicates whether there is a
link between worker j and worker m. We define the capacity
budget for PS node as Ca and the capacity budget for worker
j as Cj . We formulate the problem as follows:

min λH+(1− λ)f(wt)

s.t.



∑N
k=1 Tck ≤ Bc∑N
k=1 2Wa +

∑N
j=1

∑N
m=1 Wbrjm ≤ Bb

NWa ≤ Ca

Wb

∑N
m=1 rjm ≤ Cj

xi = {0, 1}
rjm = {0, 1}

(7)

Let H = max {Wa/B1 +Wa/B2,max {Wb/Bjm}}.
Our objective is to minimize the maximum communication

time and maximize the training speed of FedCD. If λ is set
as a large number, we pursue the minimum communication
time of a round. If λ is set as a small number, we pursue the
quick training speed of a round. The first inequality indicates
that the computing workload of T rounds for N workers is
less than a budget. The second inequality indicates the total
transmission cost per round is less than a budget. The third
inequality indicates the PS node’s capacity is larger than the
total transmission volume between the PS node and workers.
The fourth inequality indicates each worker’s capacity is larger
than the total sizes of the collected models of each worker.

III. ALGORITHM DESIGN

A. Motivation for the Algorithm Design

This section provides a brief description of the inspiration
sources in the early stage of the research, and designs LDLS
algorithms based on some experimental phenomena in the
early stage. Subsequent experiments have proven that the
algorithm we designed is efficient. In early experiments, we
evenly distributed the CIFAR10 [19] dataset to ten clients with
independent and identically distributed(iid) local data types
using the AlexNet [20] model. We fixed the learning rate
to 0.01 and conducted two experiments. The first experiment
(case1) sent layers 0-8 to PS, layers 9-10 to neighbors, and the
second experiment (case2) sent layers 0, 2, 4, 6, 8, and 10 to
PS, layers 1, 3, 5, 7, and 7 were sent to neighbors to observe
their aggregation and model accuracy in different rounds, and
the results are shown in the figure2.
We observe that in the early stages of training (when the
accuracy increases significantly), sending adjacent layers to
the same target (case1), i.e. PS or neighbors, results in faster
convergence speed compared to sending adjacent layers to dif-
ferent targets (case2). Therefore, we considered this discovery
and designed the LDLS algorithm, which combines the size
and position of each layer to determine whether to use CFL
or DFL for each layer in the early training stage.The detailed
algorithm design is shown in the following figure.

B. Layer Distribution based on the Layer’s Location and Size

We design two algorithms to decide which layer is sent
to the PS and which layer is sent to the neighbors. We first
introduce the layer distribution method which is based on
the layers’ locations and sizes in FedCD (LDLS in Alg. 1).
In LDLS, worker i first initializes two vectors µ1 and µ2,
which represent the maximum time when each layer is sent
to the PS and neighbors, respectively. FedCD uses sum1

and sum2 to express the total time when the layers are sent
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Fig. 3: Performance of AlexNet over CIFAR-10 under two different
layer allocation strategies.

to the PS or the neighbors (Line 1). FedCD also initializes
the unassigned layers set Q1 which contains all the layers
(Line 2). Since the network bandwidth always fluctuates, the
architecture uses the average value to represent the network
bandwidth. We assume that the inbound bandwidth between
the workers and the PS is B1, and the outbound bandwidth
between the workers and the PS is B2. Worker i computes
the time when it transmits the layer l’s parameter from the
worker to the PS and downloads it from the PS to the worker,
i.e., µ1(l) = M(l)/B1 + M(l)/B2. M(l) is the size of
layer l. We define the minimum bandwidth in the network
as Bmin, the maximum time when each worker transmits
the layer l’s parameter using the decentralized method is
µ2(l) = M(l)/Bmin. The layers sent to the PS are in the
set L1, and the layers sent to the neighbors are in the set L2.

We choose the layer with the minimum element in µ1 and
the layer is named c1 (Line 4), and choose the layer with the
maximum element in µ2 and the layer is named c2 (Line 6).
Then, c1 and c2 are removed from Q1 (line 7). We insert c1 and
c2 to L1 and L2 respectively (Line 8). Then we add µ1(c1) to
sum1 (Line 9) and add µ2(c2) to sum2 (Line 9). d1 is used to
express the layer’s distance from c1. If the number of the layer
is lower than c1, d1 will be lower than 0, and if the number of
the layer is higher than c1, d1 will be higher than 0. d2 is used
to express the layer’s distance from c2. Then we compute the
score of each layer: We denote m = (σ1d1 + σ2d2)M(l):

score(l) = em (15)

Alg. 1 introduces the LDLS method when c1 < c2. If
c1 < c2, the centralized method will choose the layer with
the minimum score, and the decentralized method will choose
the layer with the maximum score. That is because the scores
of the layers next to c1 are small and the scores of the layers
next to c2 are very large. If sum1 < sum2, we first choose
the element in Q1 with the minimum score and the layer will
be named l1. Then we move the layer l1 out of Q1 and insert
l1 to L1. And sum1 will be added by µ1(l1) (Lines 11-15).
If sum1 > sum2, we will choose the element in Q1 with the
largest score and the layer will be named l2. Then l2 will be
sent to the neighbors for aggregation. We move the layer l2 out
of Q1 and insert l2 to L2 . And sum2 will be added by µ2(l2)
(Lines 17-20). If c1 > c2, the centralized method will choose
the layer with the maximum score, and the decentralized
method will choose the layer with the minimum score. The

Algorithm 1 LDLS (c1 < c2)
1: Initialize µ1, µ2, L1, L2, sum1 = 0, sum2 = 0 ;
2: Initialize the set of unassigned layers Q1 = {1, 2, ..., L};
3: Sort all layers in non-decreasing order by µ1(l);
4: Select the first element c1;
5: Sort all layers in non-increasing order by µ2(l);
6: Select the first element c2;
7: Q1 ← Q1 − {c1}; Q1 ← Q1 − {c2};
8: L1.insert(c1); L2.insert(c2);
9: sum1+ = µ1(c1); sum2+ = µ2(c2);

10: while Q1 ̸= ϕ do
11: if sum1 < sum2 then
12: search the element l1 with minimum score in Q1;
13: L1.insert(l1);
14: Q1 ← Q1 − {l1};
15: sum1+ = µ1(l1);
16: else
17: search the element l2 with maximum score in Q1;
18: L2.insert(l2);
19: Q1 ← Q1 − {l2};
20: sum2+ = µ2(l2);

algorithm will end when all the layers are distributed.

C. Layer Distribution based on Consensus Distance

Note that LDLS may face performance degradation when
the number of workers in the network is large and the
number of epochs in a communication round is small. To
this end, the layer distribution based on consensus distances
[17] (LDC in Alg. 2) is proposed. The consensus distance
Dt(l) represents the deviation between the local model and
the average global model of layer l. If Dt(l) is small, it
represents that the local model is similar to the average global
model and the workers don’t need to send the layer l to
the PS. On the contrary, if Dt(l) is large, it means that the
local model differs greatly from the average global model, so
the workers need to send layer l to the PS. We define the
consensus distance of worker i is Dt(l) = 1

N

∑N
i=1 D

t
i(l).

If the layer uses centralized method, Dt+1
i (l) is defined

as Dt+1
i (l) = ||w̄t+1(l) − w

t+ 1
2

i (l)|| ,where w
t+ 1

2
i is the

model of worker i which finishes performing local training
after round t and w̄t+1(l) = 1

N

∑N
i=1 w

t+ 1
2

i (l). If the layer
uses decentralized method, Dt+1

i (l) is defined as Dt+1
i (l) =

||w̄t+1(l)− wt+1
i (l)||, where wt+1

i (l) is the model of worker
i which finishes aggregation using the models received from
neighbors after round t. However, in DFL, the average model
w̄t+1(l) is not available in practice. If the layer adopts a
decentralized method to update the model, we will use the
following method to calculate the consensus distance:
Dt+1

i (l)

= ||w̄t+1(l)− wt+1
i (l)||

=
∣∣∣∣ 1

N

∑N
j=1 w

t+ 1
2

j (l)

− (w
t+ 1

2
i (l) +

∑N
j=1 u

t
i,jAi,j(w

t+ 1
2

j (l)− w
t+ 1

2
i (l)))

∣∣∣∣
=

∣∣∣∣∑N
j=1

w
t+1

2
j (l)−w

t+1
2

i (l)

N
− ut

i,jAi,j(w
t+ 1

2
j (l)− w

t+ 1
2

i (l))
∣∣∣∣
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We set ut
i,j = 1

N for simplicity, and then Dt+1
i (l) is the

possible maximum value, thus it follows:
Dt+1

i (l)

=
∣∣∣∣∑N

j=1

(1−Ai,j)(w
t+1

2
j (l)−w

t+1
2

i (l))

N

∣∣∣∣
≤ 1

N

∑N
j=1(1−Ai,j)D

t+1
i,j

where Dt+1
i,j (l) = ||wt+ 1

2
i (l)− w

t+ 1
2

j (l)||,
Dt+1

i,j(max)(l)

= ||wt+ 1
2

i (l)− w
t+ 1

2
k (l) + w

t+ 1
2

k (l)− w
t+ 1

2
j (l)||

≤ ||wt+ 1
2

i (l)− w
t+ 1

2
k (l)||+ ||wt+ 1

2
k (l)− w

t+ 1
2

j (l)||
= Dt+1

i,k (l) +Dt+1
k,j (l)

Dt+1
i,j(min)(l)

= ||wt+ 1
2

i (l)− w
t+ 1

2
k (l)− (w

t+ 1
2

j (l)− w
t+ 1

2
k (l))||

≥ ||||wt+ 1
2

i (l)− w
t+ 1

2
k (l)|| − ||wt+ 1

2
k (l)− w

t+ 1
2

j (l)||||
= ||Dt+1

i,k (l)−Dt+1
k,j (l)||

Thus, we can estimate Dt
i,j(max)(l) as D̂t

i,j(max)(l):

D̂t
i,j(max)(l) = min

k∈[N ]−{i,j}
(Dt

i,k(l) +Dt
k,j(l)) (16)

we also can estimate Dt
i,j(min)(l) as D̂t

i,j(min)(l):

D̂t
i,j(min)(l) = max

k∈[N ]−{i,j}
(||Dt

i,k(l)−Dt
k,j(l)||) (17)

If Dt
i,j(max)(l) is used to calculate Dt(l), Dt(l) is recorded

as Dt
max(l). D

t
min(l) is the same. tps and tnb represent the

total time when the layers are sent to the PS and the neighbors.
If tps

tnb
is low, we need to arrange more layers to adopt

centralized method. Thus, the probability of transmitting layer
l to the PS ptl is inversely proportional to tps

tnb
. We perform LDC

when the round t=nT , where T is the interval of performing
two adjacent LDC. Based on the above analysis, we determine
the variable ptl by using the following equation:

ptl =
[λ

∑nT
h=(n−1)T Dh+1(l) + (1− λ)(e|d−dm|)]e

1
△ξ

e

√
tps
tnb

(18)

If the layer uses decentralized FL, we will compute the
ptl(max) and ptl(min) with Dh

max(l) and Dh
min(l) to decide

whether the layer will use centralized FL. △ξ represents the
average accuracy improvement of the models. The minimum
△ξ is set as 20%. If the accuracy improvement is lower,
we will increase the ptl to make more layers use centralized
mechanism. So we add e

1
△ξ to the equation. We compute the

average number of the layers using the decentralized method
and denote it as dm, and use d to represent the number of
layer l. We use ptl to determine the probability of using the
centralized method for the layer l. The layer with higher ptl
will be preferentially chosen to use the centralized method. We
use the exponential moving average to smooth the probability:

Pl = φptl + (1− φ)Pl (19)

where φ (0 ≤ φ ≤ 1) is a hyperparameter that reflects the
weight of the previous probability and the newly-computed
probability. We use K to denote the number scale of Pl. For
example, if Pl = 5× 10−4, then K = −4. Let V (l) represent
the communication rounds when layer l uses centralized FL.
We use Vmax to represent the total communication rounds.
We use H(l) to denote the communication rounds when
layer l uses the decentralized method. Since the layers that
perform less centralized FL always have a high probability

Algorithm 2 LDC
Input: the probability of the layers Rl; T1, T2; S1, S2

Output: L1 and L2.
1: while round t=nT do
2: if

∑
l∈L1

Rl > T1 then
3: S1 = |L1|;
4: else
5: S1 = max{S1 − 1, 1};
6: choose S1 layers in L1 with the largest Rl and these

S1 layers perform centralized FL (clear L1 and insert these
these S1 layers to L1).

7: if
∑

l∈L2
Rl(max) > T2 then

8: S2 = max{|L2|/2, 1};
9: else

10: S2 = 0;
11: choose S2 layers in L2 and these S2 layers perform

centralized FL (insert these these S2 layers to L1);
12: clear L2 and add the unselected layers to L2;

of performing centralized FL, we add a penalty item for the
probability Pl. If the layer l is in L1, we use Eq. (20) to
calculate the decision variable Rl. If the layer l is in L2, we
use Eq. (21) to calculate the decision variable Rl.

Rl = Pl + 10K
√

ln(t+ 1)(1 +
Vmax

V (l) + 1
) (20)

Rl = Pl + 10K
√

ln(t+ 1)

1 + Vmax −H(l)
(21)

When performing LDC (Alg. 2) for the first time, we first
choose the minimum layer and choose another L-S1-S2-1
layers which are next to the minimum layer with the smallest
sizes to use the decentralized method. The average number
of these layers is denoted as dm. The rest layers adopt a
centralized method. When it is not the first time to perform
LDC, we first sum up Rl of the layers in L1. If the sum is
larger than the threshold T1, S1 is set as |L1| (Lines 2-3).
S1 is the number of the layers which continue to perform
centralized FL. If the sum is lower than the threshold T1. S1

will minus 1 (Line 5). Then we choose S1 layers in L1 with the
largest Rl and these S1 layers perform centralized FL (Line 7).
Because the estimated values of Dt(l) of the layers in L2 differ
significantly from the actual value, we will not compare them
with the Dt(l) of the layers in L1 together. If we use ptl(max) to
compute Rl, we denote Rl as Rl(max), and if we use ptl(min) to
compute Rl, we denote Rl as Rl(min). We sum up Rl(max) of
the layers in L2 to compare it with the threshold T2. If the sum
is larger than T2, S2 is set to be max{|L2|/2, 1}, otherwise
S2 = 0 (Lines 8-11). And then we choose S2 layers in L2 to
use the centralized method. If S2 isn’t 0, we sort the layers
by Rl(max) using descending order. If the difference between
the value of the S2-th and the (S2+1)-th Rl(max) is less than a
threshold, we choose S2-1 layers with the highest Rl(max) and
we choose one layer of the S2-th and the (S2+1)-th layers with
higher Rl(min). Otherwise, we choose S2 layers with higher
Rl(max), and these layers perform the centralized FL (Line
13). After that, we clear L2 and add the unselected layers to
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TABLE I: The layers and size of the selected models.

Model # of Layers Size (MB)
VGG-9 12 13.33

VGG-16 21 128.25
AlexNet 11 88.78

L2 (Line 14). In the validation experiment, the LDC method
can accelerate the training speed, but the final accuracy may be
reduced. After performing LDC for some rounds, the workers
will use the LDLS method to achieve higher accuracy.

IV. EXPERIMENTS

This section introduces the experiment platform in Section
IV-A. Then we describe the datasets and models in Section
IV-B. We introduce the baselines and metrics for performance
comparison in Section IV-C. The experiment results are pre-
sented in Section IV-D.

A. Experiment Platform

We perform experiments on an AMAX deep learning work-
station equipped with an Intel(R) Core(TM) i9-10900X CPU,
4 NVIDIA GeForce RTX 2080Ti GPUs and 128 GB RAM. On
the workstation, we implement 5-10 processes to simulate 5-
10 workers and implement 1 process to simulate the parameter
server. The execution of each worker’s model training is based
on the PyTorch framework [21]. The socket library of Python
[21] is used to build up communication between workers and
the parameter server.

B. Models and Datasets

The experiments are conducted on three well-known DNNs:
VGG-9, VGG-16 [22] and AlexNet [20], which represent the
middle-size model (VGG-9) and the large-size models (VGG-
16 and AlexNet). The sizes of DNNs are 13.33MB,128.25MB
and 88.78 MB, respectively, as shown in Table I. AlexNet
is trained over CIFAR-10, which includes 50,000 images for
training and 10,000 for testing. The images in CIFAR-10 are
32×32×3 dimensional and are labeled in 10 classes. VGG9
and VGG16 are trained over the CIFAR-100 dataset which
is similar to CIFAR-10 but contains 100 classes. Then, we
illustrate how to partition the training data under non-IID
settings. For CIFAR-10, each class of the dataset distributes χ
data to one worker randomly, where χ represents a percentage.
The rest of the 1-χ data is equally distributed to the rest of the
workers. For CIFAR-100, there are 100/N classes of the dataset
that distribute χ data to one worker, and the rest of the 1-χ data
is equally distributed to the rest of the workers. We employ the
SGD [6] optimizer for AlexNet, VGG-16 and VGG-9 and the
learning rates are initialized as 0.01. The models are trained
with a batch size of 64.

C. Baselines and Metrics

Baselines: We choose three classical and efficient algo-
rithms as baselines for performance comparison, which are
summarized as follows:

(a) node=5 (b) node=10
Fig. 4: AlexNet over CIFAR-10 under IID setting.

Fig. 5: VGG-9 overCIFAR-100. Fig. 6: Total traffic in the network

• FedAvg [6] is a famous algorithm in federated learning in
which the workers send the entire model to the parameter
server and download the models after aggregation at PS.

• D-PSGD [23] is a famous algorithm in DFL. Each worker
sends the trained model to the neighbors and each worker
aggregates the models locally.

• NetMax [24] is a communication-aware DFL technique
over the heterogeneous network. It enables each worker
to asynchronously pull models from one peer for aggre-
gation. The peers with higher bandwidth are selected with
higher probabilities.

Metrics: We adopt the following metrics to evaluate the
performance of our proposed FedCD and baselines.

• Test accuracy is the amount of the right data predicted
by the model divided by the amount of all the data. It is
used to test whether the method can converge or not.

• Completion time is the time when each worker finishes
local training and model aggregation. It is used to evaluate
the training speed.

• Network traffic is the total size of the models transmitted
through the network, which is adopted to quantify the
communication cost.

D. Overall Performance

Training Performance: We use LDLS to test the perfor-
mance of FedCD under IID settings. Fig. 4 shows the training
performance of AlexNet over CIFAR-10 with 5-10 workers
under IID settings. Fig. 5 shows the performance of VGG-9
over CIFAR-100. As we can see in Fig. 4-5, our proposed
FedCD framework converges faster than FedAvg, D-PSGD,
and NetMax. This is because FedCD sends the model to the
PS and the neighbors simultaneously which can save time. Fig.
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(a) non-IID 50% (b) non-IID 70%
Fig. 7: AlexNet over CIFAR-10 under different non-IID levels.

Fig. 8: VGG-16 non-IID 50% Fig. 9: Time cost under differ-
ent non-IID levels

6 shows the total traffic in the network when AlexNet reaches
an accuracy of 70% and VGG9 reaches an accuracy of 50%.
We can find out that FedCD consumes the least traffic. FedCD
needs 22 rounds for AlexNet and 30 rounds for VGG9 to reach
the target accuracy which uses the least rounds compared to
the three baselines. In Fig. 4 we can find out that when the
scale of workers becomes larger, our proposed FedCD still
maintains its advantages over the baselines.

Performance on non-IID Data: We use LDLS to test
the performance of FedCD under non-IID settings. In our
experiments, the number of workers and epochs in a commu-
nication round is set as 8 and 20, respectively. We distribute
the dataset into different Non-IID levels χ (e.g., 30%, 50%,
and 70%) as suggested in [25]. As shown in Figs. 7-8, we train
AlexNet over CIFAR-10 and VGG-16 over CIFAR-100 under
non-IID settings. FedCD outperforms baselines at all non-IID
levels. For example, FedCD achieves an accuracy of 76.67%,
when training AlexNet over CIFAR-10 with χ=50%, which
is higher than that of FedAvg (76.42%), D-PSGD (73.37%)
and NetMax (73.79%). This is because FedCD combines the
advantage of centralized and decentralized methods which is
more robust in non-IID settings. Secondly, as χ increases,
the required completion time of each solution increases when
achieving the same accuracy. However, Fig. 9 shows that
FedCD is more robust without a significant increase in the
completion time of AlexNet over CIFAR-10 when achieving
the accuracy of 72%, compared with the baselines. For FedCD,
the time consumption is 5,860.8s (χ=30%), 6,837.6s (χ=50%)
and 7,326s (χ=70%), while 7,000.4s, 9,116.8s, 13,349.6s for
NetMax. This is because the per-epoch completion time of
FedCD is much shorter than other solutions, and FedCD
iterates more epochs and achieves a better performance under

(a) The difference between
using LDC and LDLS.

(b) Performance on
different section selection.

Fig. 10: Experiments using LDC

a given time budget.
Performance of LDC: We conduct some experiments to test

the effect of the LDC algorithm using AlexNet over CIFAR-10
with 10 workers. In Fig. 10(a), the first experiment uses the
LDLS algorithm to train the model, and the second experiment
combines the LDC and LDLS algorithms. For the first 15
rounds, we use the LDLS algorithm and for the rest rounds, we
use the LDC method and don’t change the layer distribution
after 15 rounds. The third experiment uses LDLS for the first
15 rounds. For the rounds 15-30, we use LDC, and for the
rounds after 30, we use the LDLS method again. We can find
out in Fig. 10(a) that in the first experiment, the improvement
of accuracy is very slow at the beginning, experiments 2 and 3
converge faster than experiment 1. However, the final accuracy
of experiment 2 is lower than that of experiments 1 and 3.
Finally, experiment 3 performs well on both training speed
and final test accuracy.

We continue to conduct three experiments to test the per-
formance of LDC. In Fig. 10(b), all the three experiments
use LDLS at the beginning. In the intermediate stage, all
three experiments use LDC. Experiment 1 changes the layer
distribution at rounds 15 and 30. Experiment 2 changes the
layer distribution at rounds 15, 30, and 45. Experiment 3
changes the layer distribution at rounds 10, 20, and 30. We
continue to use the LDLS method after round 45 in experiment
1, round 60 in experiment 2 and round 40 in experiment 3.
We can observe in Fig. 10(b) that experiment 3 converges
faster than its two counterparts at the beginning, however, its
training speed falls behind after 50 rounds and the final test
accuracy is the lowest in the three experiments. Experiment
1 converges faster than its two counterparts after round 50
and it reaches the highest test accuracy in the end. Thus the
number of training sections of LDC (when to change the layer
distribution) is essential to achieve quick training speed and
high test accuracy.

The Generalization of FedCD: We try to explore FedCD’s
performance in more applications, such as Human Activity
Recognition, which is to identify a person’s status (e.g.,
standing, sitting) based on the sensor data from IoT devices
(e.g., smartphones or smartwatches). For this task, we adopt
the HAR dataset [26] collected from 30 individuals, including
7,352 training samples and 2,947 test samples across 6 cate-
gories. The model trained on HAR is a CNN model (denoted
as CNN-H) with three 5×5 convolutional layers and two fully-
connected layers. We test the training performance of FedCD
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(a) Test Accuracy vs. Time (b) Test Accuracy vs. Bandwidth

Fig. 11: Training performance under different resource budgets.

and baselines under different resource (e.g., completion time
and network bandwidth) budgets. As shown in Fig. 11, FedCD
always outperforms the baselines in terms of test accuracy. For
example, given the bandwidth budget of 900MB, the accuracy
of FedCD is about 64.5%, while that of NetMax, D-PSGD
and FedAvg is about 62.2%, 60.7% and 58.6%, respectively. In
other words, FedCD can improve the accuracy by about 2.3%,
3.8% and 5.9%, respectively. Thus, our proposed framework
FedCD is also applicable to other applications.

V. RELATED WORKS

In the past few years, FL, which possesses unique advan-
tages in terms of privacy protection, has gradually become a
hot topic [6]. This has sparked profound research by numerous
scholars in the field of FL. To address the FL challenges in
various application scenarios, both centralized federated learn-
ing and decentralized federated learning have been proposed,
offering additional possibilities for advancements in the FL
domain.

A. Centralized Federated Learning

The concept of Centralized Federated Learning (CFL) was
initially introduced [27] by Google in 2016, and subsequently,
McMahan and others developed the FedAvg algorithm [6].
CFL is currently the most extensively researched and widely
used FL method. Specifically, in CFL, clients at the network
edge locally train the models using their respective datasets.
After a certain number of local training rounds, clients send the
aggregated model over the network link to a central parameter
server. The server collects parameters from different clients
and completes the global model aggregation. In the subsequent
training round, the updated global model is sent back to
specific or all clients. CFL enables collaboration in training
without revealing individual client data. However, challenges
such as potential network link delays, data heterogeneity
[14] among different clients, and device heterogeneity [28]
still require further research in this technology. Yang et al.
[29] propose an iterative algorithm to address the problem
of energy-efficient transmission and computation resource
allocation in centralized FL. Luo et al. [30] developed an
adaptive client sampling algorithm to mitigate the impact of
data heterogeneity and structural heterogeneity on centralized
FL. Liet al. [31] explored the impact of global aggregation
rate and client weight on centralized FL.

B. Decentralized Federated Learning

The concept of decentralized FL emerged after centralized
FL. The primary goal of introducing this concept is to avoid
potential network congestion and failure risks at the central
server in centralized FL. By shifting communication from
the client to the server to between clients, it further reduces
communication costs and enhances communication efficiency.
However, decentralized FL has many problems, such as posing
greater challenges to the memory of workers (in some cases
edge devices). Roy et al. [32] designed BrainTorrent based
on the idea of decentralized federated learning, providing a
highly dynamic peer-to-peer environment for clients to interact
directly without relying on the central server. Hu et al. [33]
proposed a segmented gossip approach, which fully utilizes the
bandwidth between workers, avoiding dependence on highly
concentrated topologies. Li et al. [34] proposed the BFLC
framework, which combines blockchain technology with fed-
erated learning to implement a decentralized FL method that
can effectively reduce consensus computation and malicious
attacks.

C. Hybrid Federated Learning

As we can see, both centralized federated learning and
decentralized federated learning have their own advantages
and disadvantages, so it is extremely important to find a
balance between the two. However, there is little research
on the combination of centralized federated learning and
decentralized federated learning in existing work, and most of
the work focuses on improving and analyzing these two types
separately. Lalitha et al. [35] proposed the Fully Decentralized
Federated Learning and analyzed the advantages of decen-
tralized federated learning compared to traditional federated
learning algorithms. Chou et al. [36] designed a framework
called fed P2P, which divides the network into multiple P2P
networks and only allows some devices to communicate with
the PS. Beltrán et al. [37] analyzed the existing framework
of DFL, reviewed its application scenarios and studied the
main aspects differentiating DFL and CFL. Our proposed
FedCD framework, which combines the methods of CFL and
DFL, adopts different strategies to determine the aggregation
method of the current layer (sent to PS or neighbors) based
on the position and consensus distance of the layers. This has
achieved better training performance and aggregation speed
during the experimental process, providing a new idea for the
combination of CFL and DFL.

VI. CONCLUSION

In this paper, we propose a FL framework named FedCD,
which is a combination of centralized and decentralized archi-
tectures. The method addresses the challenges of the memory
burden, huge bandwidth pressure, and non-IID local data. We
have further proposed two algorithms to decide which layer is
sent to the PS and which layer is sent to the neighbors. The
experiment results show that FedCD significantly outperforms
baselines.
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